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Late Chlamydia trachomatis inclusions express
each member of the surface-exposed polymorphic
membrane protein family (Pmp subtypes A through
1) with a reproducible distribution of fully-on, fully-
off and intermediate phenotypes. This observation
is consistent with observed variable Pmp antibody
profiles in C. trachomatis-infected patients and has
led to the hypothesis that the pmp gene family
forms the basis of a phase variation-like mecha-
nism of antigenic variation. Here we investigate
and compare the developmental expression of
each of the nine pmp genes under conditions of
optimal in vitro growth with that under conditions
that promote prolonged survival of chlamydiae
when exposed to penicillin-induced stress. We
demonstrate that the pmp gene family includes
distinct transcriptional units that are differentially
expressed along development and differentially
responsive to stress. In particular, our results indi-
cate that expression of pmpA, pmpD and pmpl is
uniquely unaffected by stress, suggesting that the
PmpA, PmpD and Pmpl proteins play a critical role
in the pathogenesis of C. frachomatis.

Introduction

Members of the Chlamydiaceae cause widespread infec-
tions in humans and animals. Chlamydia trachomatis, the
world’s most common sexually transmitted bacterial
pathogen (WHO, 2001), is also the agent of trachoma, the
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world’s leading cause of preventable blindness (Whitcher
etal, 2001). Chlamydia pneumoniae is ubiquitous in
animals and humans where it causes frequent respiratory
infection (Ekman etal, 1993; Grayston etal, 1993;
Heiskanen-Kosma et al.,, 1999) and is associated with
coronary disease (Campbell et al., 1995; Kuo et al., 1995;
Kontula et al., 1999; Wyplosz et al., 2006), the world’s
number one killer disease of humans. Contrasting with
the diversity of hosts and disease sites is the highly con-
served biphasic developmental cycle that constitutes the
backbone of the unique obligate intracellular biology of
Chlamydia (Rockey and Matsumoto, 1999). A chlamydial
infection begins when an infectious but metabolically
dormant elementary body (EB) attaches to and enters into
a mucosal epithelial cell of a eukaryotic host. A critical
early event is Chlamydia’s unique ability to escape phago-
lysosome fusion, enabling survival of the internalized EB
and its subsequent differentiation into the ‘first’ reticulate
body (RB), the metabolically active, replicating form of
the organism. RBs divide by binary fission strictly within
the confines of a phagosome-derived vacuole termed the
inclusion. After several rounds of exponential growth,
RBs that may now number in the hundreds in the replete
inclusion start to differentiate to EBs asynchronously;
such that the mid cycle inclusion contains many replicat-
ing RBs and few EBs, while the late inclusion contains
few remaining RBs and a majority of fully differentiated,
fully infectious EBs. The infectious progeny may then be
released and disseminated to new mucosal sites upon
lysis of the infected host cell or exocytosis (Todd and
Caldwell, 1985; Hybiske and Stephens, 2008) thereby
closing the developmental cycle.

Chlamydial development may be altered in vitro upon
exposure to antibiotics (Tamura and Manire, 1968;
Matsumoto and Manire, 1970; Dreses-Werringloer et al.,
2000; 2001), depletion of essential nutrients such as
amino acids (Allan and Pearce, 1983; Allan et al., 1985;
Beatty et al, 1994a) or iron (Raulston, 1997; Al-Younes
etal.,, 2001), exposure to IFN-y (Beatty etal., 1993;
Pantoja etal.,, 2001), heat shock (Engel etal., 1990a;
Kahane and Friedman, 1992) or phage infection (Hsia
etal,, 2000). Under these conditions, RBs undergo a
classical stress response characterized by upregulated
expression of heat shock chaperonins (Engel etal,

cellular microbiology



2 J. A. Carrasco et al.

1990b; Molestina et al., 2002; Belland et al., 2003) and
coincidental inhibition of cell division. This results in the
generation of aberrantly enlarged, multinucleated RB
forms termed aberrant RBs (Beatty et al., 1993). Because
aberrant RBs may survive in vitro for extended periods
of time, yet are able to revert to normal RBs (and later
differentiate to EBs) upon removal of the stressor (except
for phage-induced stress), the chlamydial stress response
has been suggested to play a role in persistent or chronic
infection in vivo (Beatty etal, 1994c), a hallmark of
chlamydial disease. Among these, persistence induced
in vitro by penicillin has provided a convenient, albeit
controversial, model for persistent chlamydial infections in
humans. An uncontested benefit of in vitro persistence
models, however, is that comparative studies of develop-
mental growth under stressed and normal conditions have
provided unique insight into pathways that determine the
fate of a chlamydial infection and its impact on the host
response (Beatty et al., 1994c; Belland et al., 2003).

We have recently reported unique regulatory properties
of a polymorphic membrane protein (Pmp) gene family
(Grimwood and Stephens, 1999) present in all species of
the Chlamydiaceae (Stephens et al., 1998; Kalman et al.,
1999; Read etal., 2000; 2003; Thomson et al., 2005;
Azuma et al., 2006). Under normal culture conditions,
each of the nine Pmp proteins of C. trachomatis (Pmp
subtypes A through I) was variably expressed at the
surface of chlamydiae in individual inclusions (Tan et al.,
2010). Inclusions observed at 48 h post infection (hpi)
displayed a reproducible distribution of fully-on, fully-off
and intermediate Pmp phenotypes. These observations
together with observed variable Pmp subtype-specific
antibody profiles in C. trachomatis-infected patients (Tan
et al., 2009) are consistent with our hypothesis that the
pmp gene family of C. frachomatis forms the basis of a
phase variation-like mechanism of antigenic variation,
presumably for the dual purpose of immune evasion and
adaptation to different niches within the infected host(s)
(Tan et al., 2010).

These findings are significant in view of the reported
or predicted functions of the pmp gene family. Recent
reports have identified PmpD of C. trachomatis (Crane
et al., 2006; Swanson et al., 2009), and Pmp6, Pmp20
and the PmpD orthologue, Pmp21, of C. pneumoniae
(Wehrl et al.,, 2004; Molleken et al., 2010) as possible
adhesins for both these organisms. Indeed motifs similar
to the GGA(I,L,V) and FXXN repeat motifs present in the
Pmps have also been found in adhesins of Anaplasma
phagocytophilum (Girard and Mourez, 2006). These prop-
erties and the independent immunoproteomic identifica-
tion of Pmp peptides as protective antigens (Karunakaran
et al.,, 2008), has highlighted the potential of the surface-
exposed Pmp family in the development of a multi-
component Chlamydia vaccine.

Here, we examine the expression of each member of
the pmp gene family of C. trachomatis at the transcrip-
tional and phenotypic levels along normal development
and under conditions of penicillin-induced stress. Results
suggest that multiple levels of regulation exist including
transcriptional and post-transcriptional mechanisms with
several pmp genes differentially expressed along devel-
opment and six of nine pmp genes strongly downregu-
lated in stressed cultures. Moreover, the identification
of several Pmps commonly expressed under normal and
stressed conditions provides new incentive for further
investigation into the potential of Pmp proteins in the
development of a multi-component vaccine against
chlamydial genital infections.

Results

pmpABC, pmpFE and pmpGH are cotranscribed in in
vitro-grown C. trachomatis

In view of the colinearity of pmpA, B and C, pmpF and E,
and pmpG and H (Fig. 1A), we first investigated the
presumed cotranscription of these genes by RT-PCR.
Because our previous immunofluorescence (IF) studies of
in vitro-grown C. trachomatis serovar E have shown that
each Pmp protein subtype is strongly expressed at late
developmental times (Tan etal, 2010), we evaluated
transcription in similar cultures at 24, 32 and 48 hpi. Total
RNA was used to amplify the intergenic regions between
members of each gene pair by RT-PCR. Figure 1B shows
that the pmpA-B, pmpB-C, pmpF-E and pmpG-H inter-
genic regions are amplified at 24, 32 and 48 hpi, confirm-
ing that these loci are transcribed at late developmental
times and indicating that pmpABC, pmpFE and pmpGH
are organized in operons. Transcript levels were markedly
lower for pmpA-B and pmpB-C than for pmpF-E and
pmpG-H.

pmp transcription is developmentally regulated

Transcription of each pmp gene was first examined at
2 hpi, then at 6 h intervals during the active growth phase
of C. trachomatis (2—24 hpi) and at longer intervals there-
after using RT-gPCR (Fig. 2). The essential gene tufA
encoding elongation factor EF-Tu involved in protein
synthesis was used for comparison as it is not only well-
expressed throughout development but is also a reliable
measure of exponential growth. Conveniently, EF-Tu is
also used as a target antigen for IFA staining of inclusions
in subsequent experiments in this study (see below)
(Zhang et al., 1994). After a lag corresponding to early
EB-to-RB differentiation, fufA transcription expectedly
rose swiftly until 18 hpi, levelled off between 18 and 24 hpi
and sharply decreased beyond 24 hpi as RBs differentiate
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Fig. 1. pmpABC, pmpEF and pmpGH are
single transcriptional units. (A) Organization of
the pmpABC, pmpFE and pmpGH putative
operons with gene sizes and intergenic
distances (not drawn to scale). Total RNAs
from C. trachomatis cultures grown under
normal conditions (B) or with 200U penicillin
(C) were obtained at different times post
infection as indicated and amplified by
RT-PCR with specific primers flanking the
intergenic region of pmpA-pmpB,
pmpB-pmpC, pmpF-pmpE and pmpG-pmpH
respectively. C+, positive control

C. trachomatis genomic DNA. C—, negative
control cDNA from uninfected HelLa cells;
RT/-RT, with/without reverse transcriptase.
Molecular sizes were obtained by alignment
with a 50 bp ladder (Fermentas).
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Fig. 2. Transcription of specific pmp genes of C. trachomatis is differentially regulated along development and upon exposure to penicillin.
Transcript levels were measured by real-time RT-gPCR in C. trachomatis grown under normal conditions (white bars) and with penicillin (black
bars) at 2, 6, 12, 18, 24, 32, 48 and 72 hpi. Transcript levels of the tufA gene encoding EF-Tu are used for comparison.
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into EBs and protein synthesis gradually shuts down in a
growing number of differentiating RBs within the inclusion
(Fig. 2). Although detectable for all pmp genes, 2 hpi tran-
script levels were expectedly very low, particularly for
pmpA-C. Consistent with the results of RT-PCR amplifi-
cation of intergenic segments (Fig. 1B), expression was
highest for the linked pmpEFGHI genes with a ninefold
difference between the most and least expressed pmp
genes (pmpG and pmpB, respectively) and a fourfold
average difference between genes of the pmpEFGHI and
pmpABC loci. In sharp contrast with fufA expression, tran-
scription of all pmp genes except pmpA, pmpD and pmpl
was highest at late (24-48 hpi) developmental times with
a characteristic peak at 32 hpi followed by a decline at
48 hpi and beyond (Fig. 2). Expression of the unlinked
pmpA and pmpl rose significantly at 12 hpi, peaked at mid
development (18 hpi) and declined thereafter. Transcript
levels of pmpD uniquely continued to rise until 48 hpi and
declined thereafter.

EF-Tu PmpB
% <
EF-Tu PmpC
P <4

pmp transcription is altered in penicillin-induced
persistent C. trachomatis

In experiments using C. trachomatis grown under normal
conditions, we infrequently observed inclusions contain-
ing aberrantly enlarged chlamydiae at late developmental
times with altered or shut off pmp expression (Fig. 3).
Because of the physical likeness of these rare inclusions
to stress-induced in vitro-persistent inclusions, we inves-
tigated the expression of each pmp gene comparatively in
C. trachomatis grown under normal conditions and under
penicillin-induced stress by RT-gPCR. tufA again provided
an appropriate control for these experiments as a chlamy-
dial gene unlikely to be influenced by penicillin and whose
expression is maintained past 24 hpi in stressed chlamy-
diae (Belland et al., 2003). As expected, expression of
tufA was not significantly affected by exposure to penicillin
until the late developmental time of 48 hpi when expres-
sion was upregulated under penicillin stress. Expression

Fig. 3. Aberrant inclusions are present in normal cultures. Infected HelLa cells were fixed at 42 hpi and double-stained with anti-EF-Tu
antibody and antibodies specific for PmpB, PmpC or PmpH as indicated, and visualized at 400 x magnification. Single channel and merged
images (m) are shown. White arrowheads indicate aberrant inclusions.
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of tufA appeared to fall sharply at the latest developmental
time of 72 hpi under both growth conditions; however,
this was due to an unexpected loss of monolayer integrity
rather than to specific downregulation (not shown).

Exposure of infected monolayers to penicillin led to the
downregulated expression of all pmp genes except pmpaA,
pmpD and pmpl. The largest drop in expression was seen
for pmpB and pmpC at 32 hpi (27- and 21-fold, respec-
tively). Expression of pmpA, pmpD and pmpl was rela-
tively unchanged upon exposure to penicillin except for a
partial decrease at early times for pmpA and pmpl and at
late times for pmpD in penicillin-induced stress vs. normal
conditions. Both RT-PCR (Fig. 1C) and RT-gPCR (Fig. 2)
experiments revealed similarly reduced transcript levels
for pmpE, F, G and H under penicillin exposure that
were approximately twofold lower than that for pmpl by
RT-gPCR.

Pmp production is altered in penicillin-stressed
C. trachomatis inclusions

Although RT-gPCR is suitable to observe changes in gene
expression at the population level, this method is inappro-
priate to evaluate production from the expressed gene
in individual inclusions. To address this question, we
investigated the production of each Pmp subtype in
C. trachomatis-infected HelLa 229 monolayers with or
without exposure to penicillin by IF using a panel of mono-
specific polyclonal antibodies (pAbs) and monoclonal
antibodies (mAbs) and methodology that has been
previously described (Tan etal., 2010). Measurements
of overall fluorescence intensity were also obtained to
further quantify visual evaluations. Although penicillin-
induced stress is not encountered by chlamydiae during a
natural untreated infection, a significant benefit of this
model is that only growing chlamydiae, not host cells, are
affected by the drug. Although early inclusions were too
small to evaluate Pmp production, the off frequency of
inclusions stained for each Pmp subtype was similar to
our earlier results (Tan et al., 2010) at each developmen-
tal time at which whole inclusions could be observed
(approximately 12 hpi and beyond) (not shown). Inclu-
sions at the two developmental times of 24 and 48 hpi are
shown in Fig. 4. These, respectively, represent inclusions
near the onset of late differentiation and mature inclusions
in unstressed cultures, and inclusions at two stages of
persistent growth in cultures exposed to penicillin. The 24
and 48 hpi times allowed for direct comparison of inclu-
sions containing non-dividing aberrant RBs in the two
stressed cultures with inclusions, respectively, containing
a majority of undifferentiated RBs or mostly differentiated
EBs in the unstressed culture (Fig. 4). Double staining
with EF-Tu-specific mAb and Pmp subtype-specific pAb
or mAb yielded distinct patterns of Pmp production in

© 2011 Blackwell Publishing Ltd, Cellular Microbiology

individual stressed inclusions at the two developmental
times. In agreement with the qRT-PCR results, neither
PmpB (Fig. 4B) nor PmpC (not shown) were produced to
any significant levels by IF at any time in stressed cultures
(Fig. 4E). Consistent with gRT-PCR results, PmpA stain-
ing intensity was similar in stressed and unstressed cul-
tures (Fig. 4E). In unstressed inclusions, PmpA-specific
and EF-Tu-specific staining were mostly colocalized in
the inclusion lumen, suggesting that a major portion of the
PmpA protein remains associated or in close proximity to
the chlamydiae (Fig. 4A). However, in penicillin-stressed
inclusions, while EF-Tu staining was concentrated on
aberrant RBs, PmpA staining was distributed over the
whole inclusion suggesting that PmpA antigen is diffusible
under these conditions (Fig. 4A). In contrast, the produc-
tion of PmpD and Pmpl, although predicted to be mostly
unchanged in penicillin-stressed cultures by RT-qPCR,
was altered with respect to both the distribution and level
of production of the proteins (Fig. 4C and D). PmpD and |
antigen appeared to concentrate in the luminal space
between mostly unstained aberrant RBs with higher
amounts of the proteins concentrating at the periphery of
the aberrant RBs. Overall production of PmpD and Pmpl
was also decreased by 43% and 47% at 24 hpi and 50%
and 40% at 48 hpi, respectively, under exposure to peni-
cillin (Fig. 4E), perhaps reflecting the observed late down-
regulation of pmpD transcription (Fig. 2) and decreased
stability of both proteins in stressed cultures. Production
of the genetically linked PmpE, G and H proteins, pre-
dicted to be dramatically reduced by RT-qPCR, was
expectedly reduced by IF at the two developmental times
(not shown and Fig. 4E). However, while PmpE antigen
was rarely detected, PmpG and H proteins were detected
concentrated in the luminal space surrounding aberrant
RBs similar to the pattern observed for PmpD and | (e.g.
Pmpl in Fig. 4). PmpF, although predicted to be reduced
by RT-gPCR, was produced at similar levels in both
stressed and unstressed cultures (Fig. 4E), perhaps
reflecting elevated stability of the protein under stress
conditions, and was also distributed similar to PmpD and
Pmpl (Fig. 4C and D). It was also noted that while the
overall level of production of PmpD, G, H and | was
generally lower at 48 than 24 hpi, there was significant
inclusion-to-inclusion variation at either time.

Discussion

The observed, uncoordinated on/off switching of each
member the C. trachomatis pmp gene family (Tan et al.,
2010) suggests complex, multilayered mechanisms
involving transcriptional and post-transcriptional regula-
tion. In this study, we investigate the regulation of pmp
expression as a consequence of two essential physiologi-
cal functions: the specific requirement of chlamydiae to
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(A)
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Fig. 4. Production of Pmps is altered in stressed inclusions. C. trachomatis-infected Hela cells were fixed at 24 and 48 hpi, and
double-stained with EF-Tu-specific antibody and Pmp-specific antibody as indicated. Merged images (m) and magnified insets thereof are
shown in the two right-most columns. For each Pmp, inclusions grown under normal culture conditions or penicillin-induced stress conditions
(pen) are shown. Only results obtained for PmpA (A), PmpB (B), PmpD (C) and Pmpl (D) are shown as they are representative of all other
Pmps. Staining patterns at 24 and 48 hpi obtained for PmpC, PmpE, PmpF, PmpG and PmpH (not shown) were, respectively, similar to those
obtained for PmpB, PmpD, PmpA, PmpD and PmpD. (E) IF staining quantified at 24 and 48 hpi under normal (white) and penicillin-stressed
(black) conditions. Statistically significant differences (P < 0.01) are indicated with *.
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Fig. 4. Continued.
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Fig. 4. Continued.

differentiate from replicating RBs to infectious EBs, and
the chlamydial survival response to stress.

In order to assess transcriptional regulation, we first
undertook to identify transcriptional units. The presumed
operon structures of the pmpABC, pmpFE and pmpGH
were confirmed by detection of intergenic cDNAs.
Although cotranscription of pmpBC, pmpFE and pmpGH
is consistent with transcriptional regulation as the basis of
the putative on/off switching mechanism as the observed
Pmp/off frequencies within each gene pair are similar
(respectively 5-10/5-10, 1-2/5-10 and 1-10/1-2%), dis-
similar off frequencies for PmpA (0.1-1%) and PmpB/C
(5—-10%) and the observation that PmpB/on-PmpC/off and
PmpB/off-PmpC/on inclusions coexist in the same culture
(Tan et al., 2010) suggest that at least for the pmpABC
operon, distinct regulatory mechanisms are operating for
each gene.

The uniqueness of the pmpABC operon was further
highlighted by the distinct developmental profile of pmpA
whose transcript peaked at the mid developmental times
of 12 and 18 hpi, sharply contrasting with most other pmp

transcripts, including those of the putatively cotranscribed
pmpB and C that peaked late (Fig. 2). A possible expla-
nation for this result is that pmpA may be under the
control of a second pmpA-specific promoter in addition
to the pmpABC operon promoter. Alternatively, post-
transcriptional mechanisms affecting mRNA stability
or epigenetic modification may be responsible for the
observed differential developmental transcription within
the pmpABC operon. Similar to pmpA, pmpl transcription
also peaked at the early-late developmental time of
18 hpi, suggesting that multiple, distinct regulatory
mechanisms govern expression at the pmpEFGHI
locus. The pmpBC and the highly expressed pmpFE and
pmpGH cotranscribed pairs as well as the unlinked pmpD
gene displayed similar transcription profiles along devel-
opment with a typical peak at 32—48 hpi, suggesting a role
of the corresponding gene products either at late stages
of development or during the early steps of infection.
Notwithstanding differences in the developmental tran-
scription profiles of pmp genes and operons, transcripts
were detected for all pmp genes at late developmental

© 2011 Blackwell Publishing Ltd, Cellular Microbiology
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times, consistent with the detection of pmp gene products
at the EB surface in late inclusions (Tan et al., 2010) and
with the presence of antibodies to one or more Pmps in C.
trachomatis-infected patients (Tan et al., 2009).

The expression profile of the pmp gene family was
noticeably altered in response to stress. Whereas tran-
scription of pmpBC, pmpFE and pmpGH was markedly
downregulated when infected cells were exposed to peni-
cillin, transcription of pmpA, pmpD and pmpl was mostly
unaffected with only partial, statistically significant reduc-
tion of pmpD transcription at 48 hpi (Fig. 2). Penicillin-
stressed transcript levels were generally concordant with
expressed levels of the gene products detected by IF in
penicillin-stressed infected cells (Fig. 4). A similar expres-
sion profile was independently observed for pmpD of C.
trachomatis serovar L2 (Kiselev et al., 2007), suggesting
that these findings hold true across biovars, serovars and
strains. It is interesting that pmpA, pmpD and pmpl, which
are the most conserved pmp genes in C. trachomatis
(respectively 99.6%, 99.1% and 99.2% similarity at the
amino acid sequence level), are also uniquely expressed
under stress conditions. It suggests that these three pro-
teins may play a critical role above and beyond that of the
other Pmps under conditions that are least amenable to
chlamydial growth, i.e. as chlamydiae are faced with the
need to survive rather than grow. It is also noteworthy that
these three Pmps were subject to the lowest Pmp/off
frequencies in inclusions by as much as a log when com-
pared with the other Pmps (Tan et al., 2010). One may
speculate that under conditions of stress encountered
in the infected host, chlamydiae expressing these three
Pmps may be at an advantage and that their maintained
production under stress conditions may reflect the con-
tinuous selection for survival of the fittest chlamydiae in
the infected host. Moreover, the observation that the Pmp
subtype off frequency did not change over developmental
times is consistent with our previous observation of
PmpB/on and PmpB/off inclusions in the same cell (Tan
etal., 2010), suggesting that the Pmp phenotype of a
given inclusion is a property inherent to the EB that led to
its formation.

The results presented herein have shed light on pos-
sible regulatory mechanisms governing the expression
of the pmp gene family. The significance of our findings
however rests on the role of the chlamydial stress
response in the context of infection and disease of
humans. The initial observation that chlamydiae persist as
non-dividing RBs for extended periods of time when
exposed to stress and that removal of the stressor allows
resumption of normal development to fully infectious EBs,
was tentatively interpreted as the in vitro reflection of
persistent, subclinical infection in vivo and ensuing
chronic disease (Beatty et al., 1994c). This was strength-
ened further by the observations that IFN-gamma, high

© 2011 Blackwell Publishing Ltd, Cellular Microbiology

levels of which are found at the site of chlamydial infec-
tions, induce a potent stress response in chlamydiae
through depletion of the essential amino acid tryptophan
(Beatty et al., 1994a,b). Although a direct role of the stress
response in the establishment of persistent infection is
debated, non-dividing aberrant RBs can be occasionally
observed in unstressed cultures both in vitro (Fig. 3) and
in vivo, in the context of disease (Whittum-Hudson et al.,
2006; Pospischil et al., 2009). It is therefore likely that
stress-induced aRBs are an integral part of the biology of
chlamydial infections regardless of their hypothetical role
in persistence in the infected host. The observed main-
tained expression and production of PmpA, PmpD and
Pmpl under conditions of stress (Figs 2 and 4) may thus
be highly significant for survival of the organism in
mucosal or cellular sites that are least hospitable for
chlamydial growth. The combined identification of Pmpl
as an antigen more frequently recognized by antibodies of
women with pelvic inflammatory disease than of adoles-
cent and young adult women with primary genital C.
trachomatis infection (P < 0.0001) (Tan et al., 2009), and
whose expression is unchanged under conditions of
penicillin-induced stress, provides incentive for further
investigation into the potential of high titre Pmpl-specific
antibodies as serologic predictors of chronic or more
severe chlamydial disease. Moreover the identification
of three Pmps (PmpA, D and 1) that are commonly
expressed under normal and stress-induced persistent
conditions highlights the potential of these Pmps in the
development of a component vaccine against C. tra-
chomatis infection.

Experimental procedures
Culture of C. trachomatis

Chlamydia trachomatis serovar E strain UW5-CX was propa-
gated in HeLa monolayers without cycloheximide as previously
described (Tan etal., 2009). In some experiments, penicillin
(200U) was added immediately after infection.

RNA methods

RNA extraction. Confluent HeLa 229 monolayers with and
without added penicillin were mock-infected or infected with C.
trachomatis at a multiplicity of infection of 1, placed at 37°C in 5%
CO2 and harvested at 2, 6, 12, 18, 24, 32, 48, 72 hpi. Where
appropriate, penicillin (200U ml~") was added immediately after
infection. Monolayers were lysed by addition of 2 ml TRIzol
reagent and incubation at room temperature for 5 min. After
addition of chloroform and vigorous shaking for 30 s, lysates
were further incubated at room temperature for 5 min and cen-
trifuged at 12 000 g for 15 min at 4°C. Total RNA was then suc-
cessively precipitated from the aqueous phase with isopropyl
alcohol, washed with ice-cold 75% ETOH, air-dried at room tem-
perature, resuspended in 200 pl RNase-free water and stored at
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—70°C. RNA was visually examined by electrophoresis in
agarose gels (1.5%) equilibrated with DEPC water, 5X RNA
running buffer and formaldehyde (10%).

RT-PCR. Total RNA extracted at 24, 32 and 48 hpi was used to
generate cDNA using SuperScript || RT (Invitrogen) following the
manufacturer’s instructions. The cDNA was then used to amplify
the intergenic region between adjacent pmp genes by RT-PCR
using specific primers designed using the FastPCR Professional
5.1.83 and OligoAnalizer 3.1 programs (Table S1). C. trachoma-
tis genomic DNA was used as a positive control while HeLa 229
total RNA and non-reverse-transcribed C. trachomatis total RNA
were used as negative controls.

RT-qPCR. After DNAse treatment, cDNA was generated from
1 ug RNA using SuperScript Il RT using random hexamers.
Expression of each pmp gene was measured using the iQ5
Real-Time PCR Detection System (Bio-Rad Laboratories), iQ
SYBR Green Supermix (Bio-Rad Laboratories), specific primers
for each pmp gene (Table S1) and the standard curve method for
relative quantification. 16S rRNA cDNA was used for normalizing
the data as it provides a control for the number of organisms (EBs
and RBs) (Nunes et al., 2007). Alternate normalization with 16S
rRNA genomic DNA gave similar results although peak transcrip-
tion of several pmp genes was shifted from 32 hpi to the earlier
18 or 32 hpi times (i.e. still considered late developmental times).
Gene tufA encoding elongation factor Tu (EF-Tu) was included as
an additional reference gene for RT-qPCR experiments. EF-Tu
was also used as a positive control in correlated IF experiments
(see below). Primers for each of the nine pmp genes and 16S
rRNA were designed as previously described (Nunes etal,
2007). Primers for tufA (Table S1) were designed using the
FastPCR Professional 5.1.83 and OligoAnalizer 3.1 programs.
Each plate contained two replicates of each cDNA sample and
three different negative controls. Standard curves were gener-
ated for each gene as previously described (Gomes et al., 2005).
For each experiment, the amount of target and control gene was
determined from each respective standard curve by conversion
of the mean threshold cycle values. Normalization was obtained
by dividing the amount of the target gene transcript by the
amount of 16S rRNA. Specificity of the amplified products was
verified by analysis of the dissociation curves generated by the
iQ5 Optical System Software (Version 2.0) based on the specific
melting temperature for each amplicon. The results were based
on two independent experiments (i.e. four independent RT-qgPCR
reactions).

IF microscopy

HelLa monolayers grown to confluence on coverslips were
infected with C. trachomatis serovar E at a multiplicity of infection
of 0.5 in 24-well plates under normal culture conditions or in
medium containing 200 U penicillin (added immediately after
infection), incubated at 37°C in 5% CO2 and fixed with paraform-
aldehyde at 24, 48 or 72 hpi. Fixed monolayers were then per-
meabilized with PBS containing 0.1% Triton X-100, 0.05% SDS
and 0.2% BSA and double-labelled with anti-EF-Tu monoclonal
antibody (to stain inclusions) and Pmp-specific antibodies
(Table S2). Guinea pig PmpA/B/C/E/F/G/H-specific antisera were
pre-adsorbed with partially purified insoluble His-tagged recom-
binant beta-galactosidase to remove non-specific reactivity as

before (Tan et al., 2010). For PmpA, B, C, E, F, G and H, double-
stained IF micrographs were obtained by staining first for inclu-
sions using mouse o-EF-Tu mAb as the primary antibody and
Alexa 594-conjugated goat anti-mouse IgG as the secondary
antibody, and second for a specific Pmp subtype using pre-
adsorbed guinea pig Pmp-subtype-specific antiserum as the
primary antibody and Alexa 488-conjugated goat anti-guinea pig
IgG as the secondary antibody. For PmpD and |, double-stained
IF micrographs were obtained by staining first for the specific
Pmp subtype using mouse PmpD/I-specific mAb as the primary
antibody and Alexa 488-conjugated goat anti-mouse IgG as the
secondary antibody, and second for inclusions using mouse
o-EF-Tu mAb conjugated to Alexa Fluor 594. The occurrence of
PmpD and Pmpl-negative inclusions (Tan et al., 2010) provided
evidence of no cross reactivity between Alexa 488-conjugated
goat anti-mouse IgG and mouse o-EF-Tu mAb. Stained inclu-
sions were observed on a Zeiss Axio Imager Z1 fluorescence
microscope (Carl Zeiss Microlmaging)

Measurements of average fluorescence intensity were
obtained using Imaged software 1.43u (Rasband W. NIH, USA,
http://rsb.info.nih.gov/ij) for 30 to 50 inclusions in three indepen-
dent experiments. Statistically significant differences were calcu-
lated for three independent experiments using t-test.
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