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Abstract

In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human

tongue is presented. The images are produced by a Head and Transducer Support System (HATS) [14]. The noise

and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct

tongue surfaces. In our tracking system, a novel active contour model is developed. Unlike the classical active

contour models which only use gradient of the image as the image force, the proposed model incorporates the

edge gradient and intensity information in local regions around each snake element. Different from other active

contour models that use homogeneity of intensity in a region as the constraint and thus are only applied to closed

contours [8], the proposed model applies local region information to open contours and can be used to track partial

tongue surfaces in ultrasound images. The contour orientation is also taken into account so that any unnecessary

edges in ultrasound images will be discarded. Dynamic programming is used as the optimization method in our

1

student
Inserted Text
Please Note:   This is a DRAFT manuscript submitted to the International Journal of Clinical Linguistics and Phonetics 
for a Special Issue on Ultrasound, hopefully to be published in early 2005.  The modified version will replace this at speech.umaryland.edu, if and when accepted.






2implementation. The proposed active contour model has been applied to human tongue tracking and its robustness

and accuracy have been verified by quantitative comparisons analysis to the tracking by speech scientists.

1 Introduction

Ultrasound imaging is one of most attractive ways of acquiring image sequences of the tongue during speech. It

does not expose the subject to radiation and can capture time-varying features in real-time. With the Head and

Transducer Support System (HATS) [14], head of the subject is fixed and the transducer is placed below the chin

in a known position. Accurate and reliable ultrasound images can thus be obtained during natural speech.

To reconstruct the tongue shapes from ultrasound images, automatic extraction and tracking of the tongue

surface is necessary to avoid manual extraction which is time consuming. We developed a system, EdgeTrak, that

can track the tongue surfaces through a sequence of 2D ultrasound images. The user input is just several points

along the tongue surface in a single frame. An approximated contour is obtained by B-spline interpolation. This

contour is then attracted to the tongue surface by an automatic optimization process. The optimized contour in a

current frame can be used to approximate the tongue surface in the temporally immediate adjacent frame and the

automatic optimization process is applied in this adjacent image again. The steps are repeated through all images

to produce tongue surfaces for a sequence of images.

In ultrasound images, there are always high-contrast edges unrelated to the structure of interest, and the tongue

surface may be interrupted in several places [15]. These noise characteristics make it difficult to automatically

track tongue contours in ultrasound images. Our system uses snake [13] as the tool for detecting the tongue

surface. Snake is an active contour defined within an image that can move closer and closer to the edge while

its associated energy is minimized. The energy terms of the snake are classified as internal and external energies.

The internal energy is related to the contour shape and the minimization goal for internal energy is to get smooth

and continuous curves. This makes it possible to estimate the edge positions even in places where the surface is

interrupted. The external energy is computed from the image data and it is the only term that attaches the active

contour to the image. Cohen [11] [10] proposed the balloon model, Gunn [12] introduced the dual active contour

model in order to prevent the active contour from stopping at local minima. Chalana [7] and Akgul [4] applied

temporal smoothness in addition to the spatial constraints in a single frame. Chan [8] introduced a region-based

external energy instead of the gradient of the edge for closed contour. Amini [5] developed dynamic programming

as the optimization process for the snake model.

In the EdgeTrak system, temporal smoothness is not added to the internal energy component in order to give

more flexibility to tracking during large tongue motion; however, this can be easily added. We use the contour
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(a) (b)

Figure 1. (a) Example of ultrasound image of the tongue. (b) E xample of closed contour.

in the previous frame as the initialization of the current contour and use dynamic programming to optimize the

location of the contour. To deal with the noise and unrelated edges in images, region information is applied to

open contours and intensity in local regions is incorporated with edge gradient as the external energy. To the best

of our knowledge, the active contour model in our system is the first model that applies region information to open

contours.

Akgul et al. also presented a tongue contour tracking system in [4] [3]. In their external energy definition,

only gradient information is used; this would cause some tracking problems since the tongue surface cannot be

distinguished from other high-contrast edges in the images. We solve this problem by introducing an intensity

related constraint. See details in Section 2.

2 Novelty of the Proposed Active Contour Model

Among the different energies in a snake model, the external energy is usually related to gradient of the image.

In reality, images are generally noisy and there are always high-contrast unrelated edges which make the gradient

information insufficient to extract edges of interest. By constraining the homogeneity of intensity (the image

brightness) in a region, the edge of a region in a noisy image can be successfully extracted [8][6], but this constraint

has some limitations:

First, it can only be applied to closed contours. It can not be used in some applications where open contours

need to be tracked. One example of such applications is the human tongue tracking in ultrasound images. The

ultrasound images are formed by propagating ultrasound waves through the subject’s tongue and part of its surface

is obtained in the image [14]. An ultrasound tongue image is shown in Figure 1(a). The bright white band is the

air reflection at the upper surface of the tongue. The lower edge of the band is the upper surface of the tongue, and

the upper edge of the band has no physical interpretation. Thus, only lower edge is of interest to speech scientists

though both edges have high gradient. It is hard to distinguish them by only using gradient information and there

is no enclosed region where the constraint of homogeneity of intensity can be applied.



4The second limitation of the constraint of intensity homogeneity can be seen from the example image in Figure

1(b). In this image there is a key-chain ring which has the shape of a band. If the outer edge of the key-chain ring

is of interest, the constraint of intensity homogeneity will fail since the region enclosed by the inner edge is more

homogeneous than the region enclosed by the outer edge.

The proposed snake model in this paper combines the edge gradient and intensity in local regions. The local

regions are not enclosed by the objective contour, they are in fact associated with each snake element. With the

proposed snake model, the upper edge and lower edge of the air reflection in the ultrasound images, or the inner

edge and the outer edge of the key-chain ring, can be distinguished. The proposed snake model has been applied to

human tongue tracking and its robustness and accuracy has been verified by the speech scientists via a quantitative

analysis. The related software, EdgeTrak is in use at several institutions for studying various aspects of tongue

with applications in otolaryngology, linguistics, etc. [1].

3 The Active Contour Model

The active contour model, or snake [13], is an energy minimization method to extract edges in images. The

energy definition for snakes is:

ETotal = αEint + βEext (1)

where Eint is the internal energy, Eext is the external energy, α and β are the weighting parameters. Eint controls

the contour shape and it is only related to the geometry property of the contour. Eext attaches the contour to the

image and defines the image features that are of interest.

Given a contour which is a set of points [v0, v1, ..., vn−1], the internal energy controls the smoothness and

continuity of the contour and is defined as [2]:

Eint(vi) = α1(1 −
~vi−1vi. ~vivi+1

| ~vi−1vi| . | ~vivi+1|
) + β1||vi − vi−1| − d| (2)

where vi is the ith snake element, α1 and β1 are the weighting parameters. d is the average length between two

continuous snake elements.

The external energy is usually defined as the negative of the image gradient [12] [3] [2] and we use the normalized

external energy as:

Eext(vi) = 1 − |▽I(vi)| /M (3)

where M is the normalization constant, I is the image intensity. At each pixel (x, y) of the image, the image

gradient is defined as ▽I(x, y) = (∂I(x,y)
∂x

, ∂I(x,y)
∂y

).
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Figure 2. The definitions for ti, ni, Ri and R
′

i.

In reality, using only gradient information as the external energy is not enough due to the image noise and the

high-contrast edges unrelated to the structure of interest. The constraint of homogeneity of intensity in a region

is also not appropriate in case of open contours, or closed contours of band-shape objects. A region based band

energy is presented below to solve these problems and it is also the main contribution of this paper.

In our active contour model, the contour is a set of snake elements [v0, v1, ..., vn−1] and the order of these

elements are kept in the whole optimization process. For snake element vi, we define its tangent ti as the direction

of the line connecting its two neighbor elements:

ti =
vi+1 − vi−1

|vi+1 − vi−1|
. (4)

The normal vector ni of element vi can be obtained by rotating ti 90 degrees in the counter-clockwise direction.

Then we can define two regions Ri and R
′

i for vi. Ri is a quadrilateral with one edge connecting vi and vi+1 while

another edge is in the normal direction. R
′

i is same as Ri except that it is in the opposite direction of the normal.

For a band-shape object, Ri should be inside the band and R
′

i should be outside the band, or vise verse. The

difficulty in defining Ri and R
′

i is that we cannot easily decide the edge length of the quadrilateral in the normal

direction. This should depend on the application and the length should be smaller than the depth of the band. In

our current system which is designed for tongue contour tracking from ultrasound images produced by HATS [14],

there are 33 snake elements for each snake. We simply approximate the edge length as the average length between

adjacent snake elements. The edge length is several pixels with this approximation. This definition guarantees

that the edge length is smaller than the depth of the bright white band as shown in Figure 1(a). The definitions

for ti, ni, Ri and R
′

i are shown in Figure 2.

Suppose Ri is inside the band and the band-shape object of interest has a high intensity value than the back-

ground of the image, then the difference between the mean intensity of region Ri and the mean intensity of region
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(a) (b) (c)

Figure 3. Extraction of the outer edge of a key-chain ring. (a ) Snake initialization. (b) Edge extracted
without band energy. (c) Edge extracted with band energy.

(a) (b) (c) (d)

Figure 4. Extraction of tongue contour. (a) Ultrasound tong ue image. (b) Snake initialization. (c) Edge
extracted without band energy; some snake elements are attr acted to the unrelated high-gradient
upper air reflection edge. (c) Edge extracted with band energ y.

R
′

i should be large. The mean intensity difference between Ri and R
′

i is:

dif(vi) =
1

n · N
· (

∑

pj∈Ri

I(pj) −
∑

p
′

j
∈R

′

i

I(p
′

j)) (5)

where pj is the pixel in region Ri, p
′

j is the pixel in region R
′

i, n is the number of pixels in region Ri or R
′

i and N

is the intensity normalization constant. In our application, N is 255.

The region based band energy is then defined as:

Eband(vi) =











pen dif(vi) < 0

1 − dif(vi) otherwise
(6)

where pen is a penalty constant applied to vi when the mean intensity difference between Ri and R
′

i is less than

zero. In our application, we let pen = 2 and obtain good results for the tongue edge extraction. For snake elements

which are located at the two ends of the snake and have no normal definitions, we use Eband of their neighbors to

approximate their band energies.

Note that we are interested in finding the best location of each snake element vi, where the intensity difference
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i is the maximum (in case Eband(vi) is the only constraint which needs to be minimized) among

several possible positions of vi (see section4). We do not care about the absolute value of this difference, which

means the depth of R or R′ is not critical. Since vi is dynamically re-positioned, Ri and R′

i need to be re-calculated

according to the orientation of vi at each iteration of the optimization process. For fast implementation, we weight

the intensity values of all pixels inside R and R′ uniformly.

Now we have both intensity and gradient information for a snake element and we define a new external energy:

E
′

ext(vi) = Eband(vi) · Eext(vi). (7)

E
′

ext(vi) uses both intensity and gradient instead of only using gradient. As we explained above, Eband(vi) is

related to the intensity difference between two regions Ri and R′

i around each snake element vi. One should see

that Ri and R′

i are related to the orientation of the snake at vi, thus Eband(vi) is the intensity difference measure

along the normal direction of vi while the gradient measure Eext(vi) has nothing to do with the orientation of the

snake. Most importantly, the gradient is just for the snake element while the intensity information comes from

neighbor regions around the snake element. This is very helpful in the tracking problem when the speckle noise

is presented in the image since speckles are not favored by E
′

ext(vi) where the intensity value is calculated over

regions. Also the unrelated edges in the images such as the upper edge of the air reflection in the ultrasound image

and the inner edge (or the outer edge if the orientation of the contour is reversed) of the key-chain ring will get a

penalty from Eband(vi) and can not attract the active contour any more.

The performance of band energy is shown in Figure 3 where the outer edge of the key-chain ring is the interest.

Figure 3(a) is the initialization of the snake. Without the band energy, the snake is attracted to the high-contrast

inner edge as shown in Figure 3(b). With the band energy and appropriate contour orientation definition(counter-

clockwise), the outer edge of the key-chain ring is correctly extracted as shown in Figure 3(c).

Band energy is important in order to correctly detect the human tongue surface in ultrasound images (see Figure

4 for an example). Without the band energy, some snake elements are attracted toward unrelated high-gradient

edges (the upper edge of the air reflection) while with band energy, the tongue surface is correctly extracted.

The band energy definition depends on the normal direction of snake element. In the above key-chain ring

example, one can reverse the contour orientation to extract the inner edge of the key-chain ring easily since region

Ri and R
′

i can be exchanged. In case the object of interest has lower intensity than the background of the image,

the band energy can still work in the same way with appropriate contour orientation definition.



84 Optimization Process

In our tracking system, the optimization method is based on dynamic programming [5]. The contour of each

frame is initialized by copying the contour from the previous frame. The normal of snake element vi is recalculated

in each optimization step. From the definitions of Eint(vi) and E
′

ext(vi) in Equations (2) and (7) respectively, one

can see that the energy of the snake element vi only depends on two neighbors of this element and itself. The

optimization for one contour can be processed in multiple steps. Each step is decomposed into n independent

stages. In stage i only the energy of vi is minimized and the elements under consideration are only vi−1, vi and

vi+1. After n stages, energies of all snake elements are minimized and the energy of each element are summed up

as the current ETotal. This process continues iteratively until the ETotal does not decrease any more. Compared

with the exhaustive search method, the search cost is dropped from O(ln) to O(n ∗ l3) with dynamic programming

(n is the number of snake elements and l is the size of the search space respectively).

An efficient way to define the search space for the snake element vi is to restrict the search along the normal

direction of this point. In our application, search is in the normal direction and the position of each snake element

is rearranged along the tangent direction of this point after every step of the optimization process. The purpose of

the rearrangement is to keep all snake elements evenly located along the contour while the current contour shape

is kept unchanged. In EdgeTrak system, the size of search space is l = 5 by default. It has been found in practice

that this search space works for tracking most tongue contours. In case of large tongue motion which means that

the snake initialization copied from the previous frame is far away from the true tongue surface, the search space

needs to be increased by user.

E
′

ext(vi) depends on regions Ri and R
′

i. These two regions are decided by the normal of the snake element. In

each step of the optimization process the normal is calculated to decide the search direction and at the same time

Ri and R
′

i can be obtained according to the normal.

5 Experiment Results

EdgeTrak has been used to track the tongue surfaces in ultrasound images. In EdgeTrak system, the user input

is just several points along the tongue surface in the first frame. An approximated contour is obtained by B-spline

interpolation. This contour is then attracted towards the tongue surface by automatic dynamic programming

optimization process. Every frame in the sequence gets its snake initialization from its previous frame and the

snake is optimized in the same way as in the first frame. The tracking of an example sequence shown in Figure

5 is performed and the results are shown in Figure 6. Another example sequence is shown in Figure 7 and its

tracking result is shown in Figure 8. The visual inspection of the tracked contours shows that our snake model



9”yaya” ”golly” ”he sought”

expert 1 vs. expert 2 3.77 2.47 2.50

automatic vs. expert 1 2.64 1.83 2.39

automatic vs. expert 2 3.59 2.20 3.02

Table 1. Mean distance errors in pixels. 1 pixel=0.295mm.

Figure 5. Image sequence of example 1. Every 10th frame from 6 7 frames is shown. Image at the top
is the first frame.

works pretty well.

One more sequence is shown in Figure 9. In this sequence, more speckle noise is present. Tracking result by

EdgeTrak is shown in Figure 10. The tongue surface, which is the lower edge of the air reflection is successfully

tracked. Unrelated high-contrast edges, e.g. the upper edge of the air reflection is discarded due to the introduced

band energy in EdgeTrak. Without the band energy, it is difficult to distinguish the upper edge of the air reflection

from the tongue surface, as shown in Figure 4.

Note that we only use B-spline interpolation to get the snake initialization from the user input in the first frame.

In the snake optimization process, the contour smoothness is controlled by the internal energy defined in Equation

(2). Alternative approach is where snake is modeled via B-spline and the internal energy is not required since the

smoothness of the snake is encoded in the spline formulation[9]. In our current tracking system, we use explicit

snake smoothness definition so that the user can control the contour smoothness interactively.

Figure 6. Tracked contours for the sequence in Figure 5. User input is only seven points in the first
frame.
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Figure 7. Image sequence of Example 2. Every 4th frame from 33 frames is shown. The image at the
top is the first frame.

Figure 8. Tracked contours for the sequence in Figure 7. The u ser input is only seven points in the
first frame.

In order to verify the tracking results quantitatively, we compare the difference between the automatic tracking

results and the manual contours drawn by the speech scientists, and the difference between the manual contours

drawn by different speech scientists. The difference between any two contours was calculated using a Mean Sum of

Distances(MSD) by measuring the distances between closest snake elements of each contour. The MSD between

two contours U = [u1, u2, ..., un] and V = [v1, v2, ..., vn] is defined as:

MSD(U, V ) =
1

2n
(

n
∑

i=1

min
j

|vi − uj| +

n
∑

i=1

min
j

|ui − vj |). (8)

Contours tracked by the automatic tracking system, EdgeTrak, and manual tracking by two speech scientists

for three speech sequences were compared. The speeches for these three sequences are ”yaya”, ”golly” and ”he

sought” respectively. The comparison is listed in Table 1. As the numbers indicate, the automatic contours are

not isolated from the expert detected contours and the pixel errors between the automatic contours and manually
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Figure 9. A difficult sequence with more noise.

Figure 10. Tracked contours for the sequence in Figure 9.

drawn contours by scientists are quite low.

6 Conclusion

An automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is

presented. This tracking system is based on a novel snake model. In this snake model, region information around

each snake element is incorporated with the image gradient and the contour orientation is taken into account.

Compared with the traditional snake model and other models which use homogeneity of intensity in a closed

region as the image constraint, our snake model is robust to the speckle noise and can be applied to open contour

tracking problems where region information is involved.

The robustness of the proposed model has been verified by comparing the automatic tracking results and

the manual contours drawn by the speech scientists. EdgeTrak is currently being used by scientists at several

institutions. Feedbacks from them indicate that the system is efficient and accurate for speech research and related

applications.
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