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Seminowicz DA, Davis KD. Pain enhances functional connectivity of
a brain network evoked by performance of a cognitive task. J
Neurophysiol 97: 3651–3659, 2007. First published February 21,
2007; doi:10.1152/jn.01210.2006. Experimental and clinical evidence
indicates that pain can affect cognitive processes, but the cortical
networks involved in pain-cognition interactions are unclear. In this
study, we determined the effect of pain on the activity of cortical areas
involved in cognition acting as a whole (i.e., a network). Subjects
underwent functional magnetic resonance imaging (fMRI) while en-
gaged in an attention-demanding cognitive task (multisource interfer-
ence task) of varying difficulty and simultaneously receiving painful
stimuli at varying intensities. The control (baseline) condition was
simple finger tapping that had minimal cognitive demands and with-
out pain. Functional connectivity analysis revealed a cortical network
consisting of two anti-correlated parts: a task-negative part (precuneus/
posterior cingulate cortex, medial frontal and inferior parietal/temporal)
the activity of which correlated negatively with the cognitive task and
positively with the control baseline, and a task-positive part (inferior
frontal, superior parietal, premotor, and anterior insula cortices) the
activity of which correlated positively with the cognitive task and
negatively with the baseline. Independent components analysis re-
vealed these opposing networks were operating at a low frequency
(0.03–0.08 Hz). The functional connectivity of the task-positive
network was increased by cognitive demand and by pain. We suggest
this attention-specific network balances the needs of general self-
referential and environmental awareness versus focused attention to
salient information. We postulate that pain affects cognitive ability by
its reliance on this common attention-specific network. These data
provide evidence that pain can modulate a network presumed to be
involved in focused attention, suggesting a mechanism for the inter-
ference of pain on cognitive ability by the consumption of attentional
resources.

I N T R O D U C T I O N

Pain is inherently salient and as such demands attention
(Eccleston and Crombez 1999). However, the brain networks
supporting the cognitive component of pain are not clear. In
some situations, experimental pain can disrupt cognitive per-
formance and task-related activity in specific cortical regions
(Crombez et al. 1997; Houlihan et al. 2004; Lorenz and Bromm
1997). Accordingly, some people who suffer from chronic pain
also show cognitive impairment (Dick et al. 2002, 2003;
Eccleston 1995; Harman and Ruyak 2005; Kewman et al.
1991; Lorenz et al. 1997; Park et al. 2001; Veldhuijzen et al.
2006). The mechanism underlying the interaction between pain
and attention/cognitive function is not understood but likely

involves some common cortical elements because pain in-
volves similar attentional resources as other cognitive pro-
cesses.

It is well established that complex sensory experiences, like
pain and cognition, evoke neural activity distributed among
widespread regions of the brain. There have been several
studies of how pain and cognitive tasks individually or inter-
actively engage specific brain areas independently of other
brain regions (Bantick et al. 2002; Buffington et al. 2005;
Frankenstein et al. 2001; Nakamura et al. 2002; Petrovic et al.
2000; Remy et al. 2003; Seminowicz et al. 2004; Tracey et al.
2002; Valet et al. 2004; Villemure et al. 2003; Wiech et al.
2005), but it is not known how pain modulates brain networks
that operate together as a functional unit. One candidate net-
work that has been identified is activated by multiple types of
cognitive tasks and is active during a basal (no instruction)
state (Fox et al. 2005), the so-called “intrinsic” task-positive
network.

We recently reported that a cognitive task of various levels
of difficulty could be performed during concomitant experi-
mental pain (Seminowicz and Davis 2006). Using a region of
interest analysis approach, we showed that individual regions
activated by performance of this specific task (i.e., cognitive-
related areas) were not significantly modulated by pain. In that
study, we used univariate analyses, which, although very
useful for determining how individual brain regions are related
to the experimental conditions, do not determine how the
regions are cooperating as a network but rather how each
individual region is related to an experimenter-specified de-
sign. Here we expand these findings by using functional
connectivity analysis, which is based on the temporal correla-
tions between activity in spatially distinct brain areas (Friston
1994). Network analysis considers the role of sets of brain
regions working in unison (Friston and Price 2001; McIntosh
2004). Because the brain consists of efficient neuronal net-
works (Laughlin and Sejnowski 2003), network analysis is
ideal for interrogating patterned brain activity. Network anal-
ysis has the potential to show not only how individual regions
are modulated by a task or pain but also how whole networks—
consisting of potentially many distributed nodes of activity—
can be modulated. In fact, behavioral correlates might be better
represented in patterns of connectivity than regional activity
(Friston and Price 2001). Similarly, activity in a particular
brain region could differentially affect associated brain regions
so the activation of that region alone might not correlate with
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a behavioral measure, whereas the way in which it is connected
with other regions might (McIntosh 2004).

Pain has a cognitive component: to evaluate the intensity and
other qualities of the pain, attention needs be turned to the pain,
and because of the biological importance of nociceptive pain,
pain demands attention. Attention can be viewed broadly as the
focusing of resources on a specific stimulus. Different atten-
tion-demanding tasks engage a common group of brain re-
gions, including the posterior parietal, prefrontal, and anterior
cingulate cortices (Cabeza and Nyberg 2000; Naghavi and
Nyberg 2005). More recently, studies examining functional
connectivity in the resting state have reported that these regions
involved in focused attention are “connected” based on their
common temporal activity patterns during rest (Fox et al. 2005;
Fransson 2005; Laufs et al. 2003). This so-called task-positive
network works in tandem with another functional network—
the task-negative network. The activity in each network alter-
nates at low frequencies (�0.1 Hz). The task-negative network
is remarkably similar to the so-called “default mode” (Greicius
and Menon 2004; Greicius et al. 2003; Raichle et al. 2001)
resting state network and includes the precuneus/posterior
cingulate cortex (precun/PCC), medial frontal cortex (MF), and
inferior parietal cortex (iPar). The task-positive network con-
sists of a set of regions commonly activated by cognitive tasks,
including working memory and attention tasks, such as the
frontal eye fields (FEFs), lateral parietal (LP), and the visual
area MT�. The anti-correlated task-positive and -negative
networks are thought to be intrinsically active and are func-
tionally connected in several resting (task-free) scenarios (Fox
et al. 2005; Fransson 2005). Furthermore, it appears that these
functionally connected networks are stable over different tasks
(Raichle and Gusnard 2005).

Whether pain affects cognitive-related functional networks
is not known. Therefore in this study, we tested the hypothesis
that pain increases activity in networks associated with focused
attention. Because of the apparent involvement of these net-
works in a general attention framework, we hypothesized that
both pain and cognitive task performance would activate the
task-positive network and suppress the task-negative one, thus
providing a common platform for pain-cognition interactions
(Raichle et al. 2001).

M E T H O D S

Twenty-three subjects [11 male, 12 female, age: 25.6 � 4.1 (SD)]
participated in a whole brain fMRI study of pain-cognition interac-
tions. Subjects were healthy, medication free, and pain free and did
not suffer from psychiatric illness. Subjects gave informed, written
consent, and the study was approved by the University Health Net-
work research ethics board.

The attention-demanding cognitive task was a variation of the
multi-source interference task (MSIT) (Bush et al. 2003). Although
the MSIT was originally designed to robustly activate cingulate
cortex, it also activates other frontal and parietal areas considered part
of a common executive network (Fan et al. 2005; Naghavi and Nyberg
2005). We exploited the complexity of the task to create different
levels of cognitive demand based on reaction times and accuracy. The
task involved detecting and responding to one of three characters
visually presented that was different from the other two. For example,
when 3 2 2 is presented, the correct response was “3.” Subjects used
their right hands to depress a button on a MRI-compatible button box
to register their responses. In the tapping (T0) condition, the subject
responded to the position of an asterisk, which simply moved from left

to right (i.e., appeared in the 1st, 2nd, or 3rd position) sequentially on
subsequent trials and thus involved no cognitive conflict. The other
task levels (easy, moderate, difficult) manipulated positional and size
characteristics of the target to obtain three additional levels (T1, T2,
T3) of difficulty. In the easy task, T1, a number appeared in its correct
corresponding position and the other positions contained an “x. ” In
T2 and T3, each of the three positions contained a number that may
or may not correspond to its position. In the moderate task, T2, all the
numbers were the same size, but in the difficult task, T3, one of the
nontarget numbers was larger than the target number.

Pain was evoked by electrical left median nerve stimulation. The
study was a block design consisting of three pain conditions [no
stimulation (P0); mild intensity pain (P1), rated �20 on numerical
rating scale of 0 (no pain) to 100 (extremely intense pain); moderate
intensity pain (P2, �60/100)] and four task conditions (T0, T1, T2,
and T3), combined for a total of 12 conditions. The condition P0T0
(no pain, tapping task) was the control (baseline) condition for this
experiment and is assumed to have very low attentional demands.
Subjects were instructed to perform the task as fast as possible without
making mistakes. Experimental blocks were presented for 14 s in
random order and were preceded by the control condition (P0T0) for
12 s. Each subject underwent three functional imaging runs (except
for 3 subjects, for whom only 2 runs were analyzed: 1 subject because
of a technical problem with the response box and the other 2 because
of scanner problems) of 9 min 50 s, and each condition was repeated
a total of six times.

Data were acquired on a 1.5-T Echospeed MRI (GE Medical
Systems, Milwaukee, WI). Parameters for functional (T2*-weighted)
scans were as follows: 25 4-mm axial slices; single shot spiral; TR �
2,000 ms; TE � 40 ms; FOV � 20 cm; 64 � 64 matrix; in-plane
resolution 3.125 � 3.125 mm. The parameters for the structural
(T1-weighted) scans were: 124 1.5-mm sagittal slices; TE � 5 ms;
TR � 25 ms; flip � 45°; FOV � 24 cm; 256 � 256 matrix; in-plane
resolution 0.9375 � 0.9375 mm. The first three frames of each run
were discarded for signal equilibration, leaving a total of 292 frames
per run.

Three different analyses were carried out [partial least squares
(PLS) analysis is described in the following text]. 1) Task PLS of
cognitive load. This analysis was used to determine the spatial brain
activity pattern associated with the increasing cognitive load (i.e., task
difficulty). The resulting network would be attention-specific if its
activity was graded with increasing task difficulty. 2) Task PLS using
a mask. The results for these analyses were limited to the spatial
pattern identified in the first task PLS (i.e., tasks alone without pain).
This was done by creating a mask, which included only the brain areas
in the networks identified in step 1. The purpose of the mask was to
ensure that the results reflect modulation of the attention-specific
network rather than the involvement of other areas not identified as
part of the task-related networks. Two analyses were performed. The
first analysis was performed to show the effect of pain alone on the
network and included only the pain conditions during the control task
(P0T0, P1T0, P2T0). The second analysis was performed to show how
the interaction between pain and cognitive load affected the network
and included every condition. 3) Independent component analysis
(ICA). This analysis was used to determine whether the spatial pattern
identified in step 1 was robust across all conditions and to show the
low-frequency, anti-correlated nature of the task-positive and negative
parts of the attention-specific network.

Data were analyzed using multivariate techniques, including ICA
implemented in BrainVoyager QX 1.6.1 (Brain Innovation, Maastricht,
The Netherlands), and PLS (McIntosh et al. 1996) to assess functional
connectivity. Data were preprocessed in BrainVoyager QX 1.1.6 and
SPM99 (Friston et al. 1996). Data to be used in PLS analyses (see
following text) were preprocessed in SPM99 using the following
parameters: scan slice timing correction; motion correction; normal-
ization to MNI (Montreal Neurological Institute) template; spatial
smoothing of 6 mm FWHM (full width, half maximum) no temporal
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filtering. Data analyzed with BrainVoyager QX was preprocessed in
BVQX1.1.6 with the following parameters: scan slice timing correc-
tion; motion correction; spatial smoothing of 6 mm FWHM; transfor-
mation to Talairach space.

PLS (McIntosh et al. 1996) was performed to ascertain functional
connectivity. (For a review of PLS mathematics and applications to
neuroimaging, see McIntosh and Lobaugh 2004.) We used connec-
tivity analysis, task PLS, which produces a whole brain functional
map that covaries with the experimental conditions. PLS is similar to
principal components analysis with the major difference that the
resultant covariance pattern is constrained to the conditions of the
experiment. The task data are optimally fit to the functional map, and
new variables, or “latent variables” (LVs, akin to PCA components)
are created and ordered by the amount of variance they explain. The
output of a PLS analysis is a covariance map that is related to the
design structure in a given way. Thus this analysis can be considered
data-driven because no design structure is specifically given as would
be done in a general linear model (GLM). The “design scores”
indicate how strongly and in which direction a given condition
covaries with the functional map. Design scores can be positively or
negatively related to the spatial covariance map. In the task PLS
analysis, design scores resemble experimenter-designated contrast
weights in a GLM. The major difference between preset contrast
weights and design scores is that the latter are optimally fit to account
for as much variance as possible between the task conditions and the

fMRI data. The grand mean deviation PLS analysis method was used.
Data were averaged within and across blocks of the same condition
within each subject (i.e., for each subject, 1 data point for each
condition was used in the analyses).

Two statistical tests are performed in PLS: the first assesses signif-
icance by performing 500 permutation tests per LV in which condi-
tions are reassigned and the resultant structure is compared back to the
calculations for the original design. This yields a P value for each LV.
The significance level was set to P � 0.05 and, because permutations
assess significance of the overall spatial pattern rather than on a
voxel-wise basis, correction for multiple comparisons is not required.
The second test determines reliability by determining standard errors
of the saliences for each voxel using 100 bootstrap samples. The
bootstrapping method uses resampling with replacement, and the PLS
is rerun for each new set of samples. A reliable effect does not vary
depending on the samples included. This method yields confidence
intervals for the LVs and also provides a bootstrap ratio (BSR) for
each voxel and for the overall LV. BSRs are approximately equal to
a z score, where 1.96 is P � 0.05. BSR images were thresholded at
1.96, although individual peak voxels had much higher BSRs as seen
in Table 1. Reported coordinates are in Talairach space and were
converted from MNI space using a nonlinear transformation (http://
www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml).

ICA was carried out using BrainVoyager QX 1.6.1 (Brain Innova-
tion B.V.). A cortex-based mask was created for each subject using

TABLE 1. Peak voxels from task PLS covariance map with task conditions without stimulation

Region Name BA R/L x y z BSR

Task-positive regions
Frontal Inferior frontal 44 R 51 10 15 6.67

Inferior frontal 44 L �44 5 20 9.95
Middle frontal 9 L �48 40 23 6.44
Middle frontal 9 L �40 50 23 6.4
Middle frontal 46 R 48 40 15 7.48
Premotor/motor 6/4 L �26 �4 46 11.54
Premotor 6 R 28 4 45 10.07

Cingulate Anterior cingulate 32 R 6 19 36 7.39
Parietal Inferior parietal 40 L �34 �47 33 10.9

Inferior parietal 40 R 42 �46 48 10.71
Dorsal precuneus 7 R 2 �65 57 5.94

Insula Anterior insula R 38 19 1 7.36
Anterior insula L �36 19 �1 7.25

Occipital Occipital 18/19 L �28 �75 19 6.75
Task-negative regions

Medial Prefrontal Dorsal medial frontal 8 L �20 27 36 �13.76
Dorsal medial frontal 8 L �10 32 47 �5.95
Dorsal medial frontal 9 R 22 42 28 �6.5
Medial frontal 10 L �16 50 19 �6.73
Medial frontal 10 R 18 50 �4 �6.16

Posterior Cingulate/Precuneus Posterior cingulate 31 L �4 �57 16 �10.79
Posterior cingulate 31 L �8 �31 39 �7.41
Precuneus 31 R 14 �45 33 �7.04
Precuneus 7/31 R 10 �31 44 �6.74

Cingulate Pregenual cingulate 32 L �12 44 �7 �9.41
Temporal Superior temporal 22 L �51 �61 22 �9.04

Superior temporal 22 R 59 �63 13 �8.79
Middle temporal inferior 21 R 53 �1 �22 �8.17
Middle temporal inferior 21 L �55 �12 �16 �6.03
Middle temporal inferior 21 R 51 �18 �8 �7.17
Middle temporal 21 R 65 �60 3 �6.75
Parahippocampal R 42 �4 �12 �6.26
Parahippocampal L �32 �6 �10 �7.04

Parietal Secondary somatosensory 40 R 50 �26 18 �5.7
Insula Posterior insula 13 L �38 �11 11 �7.89

Posterior insula 13 R 40 �14 1 �7.44
Subcortical Putamen L �32 �23 3 �6.91

Boot strap ratio (BSR) (approximately equal to a z score) for the overall map was set to 5 to reduce cluster size and isolate more peak voxels. PLS, portial
least squares; BA, Brodmann area.
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his/her anatomical scan (Formisano et al. 2004). ICA, using a fastICA
algorithm, was run over a whole functional run and a component
having an activation pattern similar to that of the intrinsic task-
negative (or default mode) pattern (as in Fig. 1A, particularly medial
frontal and posterior cingulate cortices active) was identified by sight
from the first 30 components for each run. This component is easily
identified even when a task is being performed (see Esposito et al.
2006), based on its spatial pattern and the low frequency (�0.1 Hz)
(Cordes et al. 2001) of its time course. An example of this pattern is
shown for one subject in Fig. 2C. The frequency of the independent
component was estimated using spectral analysis of the time-course,
performed in SPSS for Windows (version 12.0.1, SPSS, Chicago,
IL). An example spectral analysis for one run of one subject is
shown in Fig. 2B. Time-course data from the IC of interest (i.e., the

task-negative component from each subject) were input into a
random effects GLM (performed in BrainVoyager QX) with trans-
formation to percent signal change across the datasets of each
individual, and data were corrected for multiple comparisons using
false discovery rate.

We present and discuss the results of the PLS and ICA analyses in
terms of network “activations” rather than considering the role of
individual regions. Thus the term “activated” in terms of networks
means that regions are positively correlated with the condition (task
and/or pain) and are also functionally connected. “Increased activa-
tion” refers to both the increased activity in individual regions of
the network as well as the connectivity between regions. When
activity in a network is “deactivated,” it is negatively correlated with
the condition.
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FIG. 1. Pain and cognitive load activate an intrinsic task-negative/task-positive network. An attention-specific network was identified in a partial least squares
analysis with 4 levels of cognitive demand in a pain-free state and displayed as a covariance map (bootstrap threshold � 1.96, color scale shows bootstrap ratio
(approximately equal to z-score)). A: design scores (bottom) indicate how the covariance pattern was represented by each condition. For example, for T0, the
design score value was negative, so blue areas co-vary positively with this task and red areas co-vary negatively with the task and with the blue areas; T3 covaried
most strongly with the task-positive network (red) and negatively with the task-negative network (blue). From this spatial pattern of activity, a mask was created,
including only those voxels that were significantly associated with the design. B: conditions with no, mild, and moderate pain during the control task (lowest
cognitive load) were included in the analysis in which the mask was applied to limit the areas to the task-positive and -negative networks. The design scores
(bottom) indicate that as pain increases, activity in the task-positive network also increases (with 1 difference: bilateral S2/posterior insula are included in the
task-positive here, whereas those regions were part of the task-negative network identified using only task conditions). Thus pain alone activates the task-positive
network. C: all pain and task conditions. The results indicate that task difficulty is associated with increased activity of the task-positive network and reduced
activity in the task-negative network, and pain further activates the task-positive network, and suppresses the task-negative network. iF, middle/inferior frontal,
iPar/MTG, inferior parietal/middle temporal gyrus, ACC, anterior cingulate cortex, PM, premotor cortex, MF, medial frontal, PCC, precuneus/posterior cingulate
cortex, sPar, superior parietal.
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R E S U L T S

Mean reaction times for each of the tasks without pain
were 422, 531, 823, and 856 ms for tapping, easy, moderate,
and difficult tasks, respectively, and pain did not signifi-
cantly affect task performance (see Seminowicz and Davis
2006).

In the first step of our PLS analyses, we identified a
network (LV 1, P � 0.001) using only the task conditions
(T0, T1, T2, T3) without pain (Fig. 1A). This analysis
extracted a network remarkably similar to the so-called
intrinsic network reported recently (Fox et al. 2005; Frans-
son 2005) and consisted of task-negative and -positive parts.
The task-negative part correlated negatively with task and
positively with the control condition and included precun/
PCC, MF, and inferior parietal/temporal area. The task-

positive part correlated positively with task and negatively
with the control condition and included middle/inferior
frontal (iF), superior parietal (sPar), premotor (PM), and
bilateral anterior insula (aIC) cortices. This network is
henceforth referred to as the attention-specific network,
consisting of task-negative and -positive parts.

We next wished to test how pain affected the attention-
specific network. To restrict our analyses to only that network
and exclude the contribution of potentially pain-related activa-
tions per se, we used a mask from the preceding results. We
then ran a task PLS analysis including only the pain conditions
during the control task (Fig. 1B). The task-positive network
was activated by increasing pain intensity, and the task-nega-
tive was slightly reduced. This indicates that pain alone has
similar effects on a task-related network as does performing a

FIG. 2. Independent component analysis (ICA) results. One independent component of interest (default mode or task-negative network; single run from one
subject), showing the time course (A) and its spectral analysis (B) and the spatial map (C) (z values shown in color bar). The periodogram in B shows the relative
amount of variance each frequency contributes to the signal. D: resultant map from general linear model (GLM} of the task-negative network independent
component time course. The analysis is based on all 23 subjects (63 runs), and each individual’s time course is used. This figure shows an intrinsic network with
anti-correlated task-positive (blue) and task-negative (red) parts. Numbers below each slice refer to the Talairach z coordinate. Color bars show t-scores.
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cognitive task. One area that differed was bilateral secondary
somatosensory cortex/posterior insula (S2/pIC), which was
part of the task-negative network with task conditions and had
decreased with increasing task difficulty, while increased pain
intensity led to increased activity in this area.

To investigate how pain and cognitive task performance
interact in terms of affecting activity in these networks, we
performed a PLS analysis including all 12 task and pain
conditions, again using the mask described preceding text to
include only the areas identified as part of the task-positive and
-negative networks. The results indicate that pain further acti-
vated the task-positive network (Fig. 1C). In other words,
activity in this network increases with increased task difficulty
and further with increasing pain intensity.

Finally, to show that the attention-specific network we
identified could also be identified in a model-free analysis and
consisted of two anti-correlated parts, we used an entirely
data-driven method, ICA, to interrogate brain activity for a
resting state-like pattern. Unlike PLS, which uses the data
averaged within blocks, ICA isolates spatial patterns based on
regional activity throughout the entire functional run. In 63 of
66 runs, we found a highly reliable pattern similar to the
task-negative network, including MF, precun/PCC, and bilat-
eral iPar. Figure 2, A–C, shows, for one run of one subject, the
time course of the IC of interest as well as the spectral analysis
and the component spatial pattern. These component time
courses were then entered in a random effects GLM analysis,
which revealed the same attention-specific network as preced-
ing text with task-negative and -positive parts (Fig. 2D; Table
2), occurring at low frequencies (�0.03–0.08 Hz) not directly
related to the task conditions. This shows that an intrinsic
“resting state” anti-correlated network operates across multiple
conditions. To demonstrate the anti-correlated nature of the
network, Fig. 3 presents the extracted blood-oxygenation-
level-dependent (BOLD) signals for two regions over a whole

run with one region belonging to the task-negative network
(PCC/precun, blue line) and the other to the task-positive
network (pPar, red line). These data from a single subject
demonstrate the anti-correlated activity of these two regions.

D I S C U S S I O N

This study has identified an attention-specific network that
has task-positive and -negative parts and showed that the
network is modulated by cognitive load and pain. The network
was identified using two different multivariate techniques, each
of which revealed specific characteristics. The task PLS results
indicate that with increasing cognitive demand, the task-posi-
tive network activity is increased and the task-negative net-
work deactivated. Pain alone has a similar effect on this
attention-specific network, and, most importantly, the interac-
tion of pain and cognitive load further activates this network.
ICA analysis confirmed that the network could be identified in
a model-free analysis, using whole time-course data. The
frequency of the two anti-correlated networks identified is
consistent with previous reports (�0.03–0.08 Hz) (Fox et al.
2005; Fransson 2005). These data provide the first evidence
that pain can modulate a network presumed to be involved in
focused (task-positive) or general self-environmental attention
(task-negative).

These findings provide a new view to understand the brain
mechanisms underlying pain-cognition interactions. It appears
that in the context of this network, the effect of pain is similar
to the effect of an additional load. According to Eccleston and
Crombez (1999), pain should affect cognitive ability because it
is an attention-demanding process that utilizes resources shared
with cognition. However, our previous fMRI study showed that
pain does not significantly attenuate cognitive-related activa-
tions (Seminowicz and Davis 2006; Seminowicz et al. 2004),
although other studies using event related potentials have

TABLE 2. Significantly activated clusters in the GLM ICA analysis

Region Name BA R/L No. of Voxels x y z

Task-positive regions
Frontal Superior/inferior frontal R 11584 39 19 22

Superior frontal 9 L 1052 �41 39 33
Inferior frontal 9 L 1392 �47 4 30
Supplementary motor 6 L 133 �11 �7 61
Supplementary motor 6 R 8250 18 �4 56
Premotor 6 L 2230 �28 �7 52

Parietal Inferior parietal 40 L 21119 �38 �48 44
Superior parietal 7 R 19012 30 �54 45

Insula Anterior insula 13 L 1201 �37 15 13
Occipital Middle occipital 18 L 372 �28 �79 1

Inferior occipital 19 L 7475 �44 �71 �5
Inferior occipital 19 R 7048 36 �72 �5

Task-negative regions
Medial prefrontal Medial frontal 9 L 56984 �3 42 26
Posterior cingulate/precuneus Posterior cingulate 29 L 32180 �8 �47 19
Frontal Inferior frontal 47 L 429 �36 24 �8
Temporal Superior temporal 21 R 907 55 �6 �10

Superior temporal 21 L 3638 �57 �16 �3
Middle temporal 39 R 1246 44 �65 27
Middle temporal 39 L 5626 �49 �61 27
Hippocampus R 538 25 �18 �12

Subcortical Caudate R 160 11 16 13
Caudate L 2979 �3 1 9

P � 1�10�8 for every cluster; GLM, general lineas model; ICA, independent component analysis. Number of voxels are 1 mm3.
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shown that pain modulates cognitive-related potentials (Hou-
lihan et al. 2004; Lorenz and Bromm 1997). Furthermore, the
behavioral results (reaction time, accuracy; see Seminowicz
and Davis 2006) indicate that pain did not affect performance
of the task. Thus it seems plausible to speculate that when pain
occurs, one must engage this network to a stronger degree to
maintain task performance. Further studies need to link asso-
ciated intrinsic networks with a behavioral outcome, such as
pain responsiveness and sensitivity. Our results clearly dem-
onstrate the utility of using network modulation analysis to
examine pain-cognition interactions.

Another possible interpretation of the task-positive network
is that it is involved in arousal, rather than attention, specifi-
cally. That pain activates this network would be in keeping
with its effects on arousal. The noradrenergic arousal system
has widespread brain stem-cortical projections (see Robbins
1997), and neuroimaging studies have demonstrated brain
stem, thalamic, cingulate, prefrontal, and parietal activations
associated with various types of arousal (Tracy et al. 2000).
Furthermore, manipulating arousal pharmacologically or oth-
erwise can affect attention and task performance (see Coull
1998). The use of blocks of electrical stimuli to evoke pain
likely reduces the impact of the initial alerting effect of pain
onset that would be encountered in an event-related design. We
could not, however, discount the possibility that the effects we
report were due in part to an effect on arousal. Future studies
that include measures of autonomic tone can provide some
insight into this possibility.

Network analysis provides some information not accessible
to univariate methods, such as those results we reported pre-
viously (Seminowicz and Davis 2006). An ROI analysis can
determine how each individual region is affected by task and
pain. For example, if each region is considered to be linked
with a unique behavior, then affecting activity in that specific
region would directly change the associated behavior. A dif-
ferent approach is used in a network analysis, which considers
the role of sets of regions working in unison (Friston and Price
2001; McIntosh 2004). For example, the medial prefrontal
cortex has been shown to be involved in self-referential (emo-
tional) processes (Fossati et al. 2003; Lane et al. 1997). Thus in
the context of pain, one might expect this region to be acti-
vated. However, when one considers this region’s role as part
of the network involved in nonspecific attention, it is apparent
why this area was deactivated by task performance as well as
by pain, when attention is focused. Figure 4 summarizes the
findings in this study with a comparison to the findings pre-
sented in Seminowicz and Davis (2006). In the top panel,
results from the general linear model (GLM) are shown in
which the assumption is that during the baseline condition

(P0T0), regions are relatively inactive. Performance of the
difficult task in the absence of painful stimulation (i.e., P0T3)
resulted in the activation (shown in red, including dorsolateral
prefrontal cortex, aIC, PM, anterior cingulate cortex, and pPar)
and deactivation (shown in blue, including MF, iPar/middle
temporal gyrus, and PCC/precun) of several regions, which
were called attention-related (de)activations. Subsequent ROI
analyses revealed that only two of these regions were activated
significantly by moderate pain alone, and the level of activation
of these regions was low compared with task performance. In
conditions where the task was performed simultaneously with
pain, this method revealed no significant differences in the
activation levels compared with task performance alone. The
darkness of the color indicates the relative strength of the
activation with darker indicating a more significant activation.
In the bottom panel, the results from the PLS analyses are
summarized. Here rather than interrogating each region inde-
pendently, the view is of an attention-specific network with
two parts, task positive and negative. During the baseline
condition, the task-negative network is active and functionally
connected, whereas the task-positive is mildly deactivated.
With task performance, the task-positive network becomes
active, and the task-negative is deactivated. Pain alone has a
similar effect as task performance, although to a smaller extent.
When the task is performed during pain, the task-positive
network becomes more active, and the task-negative network is
further deactivated. The degree of activation and the strength
of the connections are based on the saliences of given areas
with higher saliences indicating stronger connections to other
regions as well as in relation to the task structure.

In our previous study, we reported that pain did not signif-
icantly affect activity in cognitive-related brain areas (Semi-
nowicz and Davis 2006). The coordinates of the peak activity
in these areas were approximately the same as those in the
task-positive and -negative networks reported here. But only
network analysis revealed that this brain activity pattern was
modulated by pain. This finding provides further support for
the use of multivariate approaches in neuroimaging.

Our results provide additional information about the so-
called intrinsically active, anti-correlated (task-negative/task-
positive) brain network. We suggest that the task-negative part
provides a network for general self-referential environmental
awareness through which a person monitors his/her surround-
ings. The task-positive part, on the other hand, provides a
mechanism for attentional focus. At rest, one might monitor the
environment generally, and thus the task-negative network is
active and the task positive deactivated. Conversely, when one
focuses on a task or when a perception demands attention, the
task-positive focusing network is activated, and the general

FIG. 3. Example time course blood-oxygen-level-
dependent (BOLD) activity of 1 region from the task-
negative network (PCC/precun, blue line) and another
region from the task-positive network (pPar, red line),
illustrating the anti-correlated activity between the 2
regions. The data are from a single run of 1 subject.
TR � 2 s.
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environmental monitoring network deactivated. This inter-
pretation is supported by a recent imaging study of piano
performance in which pianists playing a piece (focused
attention) compared with playing scales (routine, unfo-
cused) caused much greater deactivation of regions in the
task-negative network, including precun/PCC and MF (Par-
sons et al. 2005). Although the cognitive processes involved
in a complex task like piano playing are likely different
from those required to perform the MSIT, the performance
measures (RT, accuracy) on the MSIT conditions indicate
distinct difficulty levels, which implies distinct levels of
cognitive load (see Lavie et al. 2004). Our interpretation of
attention-specific network function also has implications for
conditions in which “resting state” attentional focus is
altered, such as in patients with chronic pain in whom
attention may already be focused on ongoing pain. We
predict that in these patients, a more active task-positive
network operates at “rest,” because even in this state atten-
tional focus is centered on pain. Because this network is
already taxed, it could explain why in some chronic pain
patients cognitive abilities are diminished (Dick et al. 2002).
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